165 research outputs found

    SmartDrive: Traction Energy Optimization and Applications in Rail Systems

    Get PDF
    This paper presents the development of SmartDrive package to achieve the application of energy-efficient driving strategy. The results are from collaboration between Ricardo Rail and the Birmingham Centre for Railway Research and Education (BCRRE). Advanced tram and train trajectory optimization techniques developed by BCRRE as part of the UKTRAM More Energy Efficiency Tram project have been now incorporated in Ricardo's SmartDrive product offering. The train trajectory optimization method, associated driver training and awareness package (SmartDrive) has been developed for use on tram, metro, and some heavy rail systems. A simulator was designed that can simulate the movement of railway vehicles and calculate the detailed power system energy consumption with different train trajectories when implemented on a typical AC or DC powered route. The energy evaluation results from the simulator will provide several potential energy-saving solutions for the existing route. An enhanced Brute Force algorithm was developed to achieve the optimization quickly and efficiently. Analysis of the results showed that by implementing an optimal speed trajectory, the energy usage in the network can be significantly reduced. A driver practical training system and the optimized lineside driving control signage, based on the optimized trajectory were developed for testing. This system instructed drivers to maximize coasting in segregated sections of the network and to match optimal speed limits in busier street sections. The field trials and real daily operations in the Edinburgh Tram Line, U.K., have shown that energy savings of 10%-20% are achievable

    Electronic integration of fuel cell and battery system in novel hybrid vehicle

    Get PDF
    AbstractThe objective of this work was to integrate a lithium ion battery pack, together with its management system, into a hydrogen fuel cell drive train contained in a lightweight city car. Electronic units were designed to link the drive train components using conventional circuitry. These were built, tested and shown to perform according to the design. These circuits allowed start-up of battery management system, motor controller, fuel cell warm-up and torque monitoring. After assembling the fuel cell and battery in the vehicle, full system tests were performed. Analysis of results from vehicle demonstrations showed operation was satisfactory. The conclusion was that the electronic integration was successful, but the design needed optimisation and fine tuning. Eight vehicles were then fitted with the electronically integrated fuel cell-battery power pack. Trials were then started to test the integration more fully, with a duration of 12 months from 2011 to 2012 in the CABLED project
    corecore